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Abstract A number of (semi-)analytical solutions are available to drawdown analysis
and leakage estimation of shallow aquifer–aquitard systems. These solutions assume that
the systems are laterally infinite. When a large-scale pumping from (or injection into) an
aquifer–aquitard system of lower specific storativity occurs, induced pressure perturbation (or
hydraulic head drawdown/rise) may reach the lateral boundary of the aquifer. We developed
semi-analytical solutions to address the induced pressure perturbation and vertical leakage in
a “laterally bounded” system consisting of an aquifer and an overlying/underlying aquitard.
A one-dimensional radial flow equation for the aquifer was coupled with a one-dimensional
vertical flow equation for the aquitard, with a no-flow condition imposed on the outer radial
boundary. Analytical solutions were obtained for (1) the Laplace-transform hydraulic head
drawdown/rise in the aquifer and in the aquitard, (2) the Laplace-transform rate and volume
of leakage through the aquifer–aquitard interface integrated up to an arbitrary radial distance,
(3) the transformed total leakage rate and volume for the entire interface, and (4) the trans-
formed horizontal flux at any radius. The total leakage rate and volume depend only on the
hydrogeologic properties and thicknesses of the aquifer and aquitard, as well as the duration
of pumping or injection. It was proven that the total leakage rate and volume are indepen-
dent of the aquifer’s radial extent and wellbore radius. The derived analytical solutions for
bounded systems are the generalized solutions of infinite systems. Laplace-transform solu-
tions were numerically inverted to obtain the hydraulic head drawdown/rise, leakage rate,
leakage volume, and horizontal flux for given hydrogeologic and geometric conditions of the
aquifer–aquitard system, as well as injection/pumping scenarios. Application to a large-scale
injection-and-storage problem in a bounded system was demonstrated.
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1 Introduction

A number of analytical or semi-analytical solutions have been developed in the past decades
for analyzing drawdown induced by pumping from a permeable aquifer, which is under-
lain and/or overlain by aquitards. More recent solutions differ from earlier work by making
less restrictive assumptions on flow conditions in the aquitard, representing more realistic
aquitards, and achieving more accurate model prediction (Theis 1935; Hantush and Jacob
1955; Hantush 1960; Neuman and Witherspoon 1969; Moench 1985; Cheng and Morohun-
fola 1993; Ramakrishnan and Kuchuk 1993). For example, Hantush (1960) accounted for the
storage of the aquitards, assumed to be negligible by Hantush and Jacob (1955), and for the
leakage through the aquitards from neighboring aquifers into the pumped aquifer, assumed
to be negligible by Theis (1935). Moench (1985) developed a semi-analytical solution for
drawdown in both the aquifer and the aquitards, by taking into account the wellbore stor-
age and skin effect of a large-diameter pumping well. Using pumping tests, these analytical
or semi-analytical solutions have been extensively applied to calibrating the hydrogeologic
properties of aquifers and aquitards.

In addition, the applications of these analytical solutions have been extended to ana-
lyze pumping-induced leakage into the pumped aquifer from the aquitards and through the
aquitards from neighboring aquifers (Hantush 1964; Cheng and Morohunfola 1993; Butler
and Tsou 2003; Zhan and Bian 2006; Konikow and Neuzil 2007). For example, Zhan and
Bian (2006) presented a semi-analytical solution for the leakage rate and volume over the
entire time domain, with closed-form analytical solutions for late steady-state conditions, by
focusing on the leakage through aquitards of no storativity. In reality, however, depletion of
storage in low-permeability aquitards is the source of much of the groundwater produced from
many confined aquifer systems (Konikow and Neuzil 2007). In deep sedimentary rock, high-
permeability aquifers are often overlain and/or underlain by much thicker lower-permeability
aquitards or seals, which may have a high capacity for storage and attenuating pressure pertur-
bation (or hydraulic head drawdown) induced in the pumped aquifer. Similar to pumping for
water supply, injection into deep aquifers often has importance to isolation of environmental
wastes.

One limitation of the existing (semi-)analytical solutions stems from the assumption that
the pumped/injected aquifer is generally of infinite areal extent. This assumption may limit
direct applications of the models to large-scale pumping and injection problems. For example,
industrial-scale injection of carbon dioxide (CO2) into deep sedimentary formations is cur-
rently studied as a means of mitigating greenhouse gas effects and climate change. Injection of
large amount of CO2 (millions of metric tonnes) results in pressure perturbation (or hydraulic
head rise) propagating as far as 100 km away from the injection zone (e.g., Birkholzer et al.
2008), significantly larger than the extent of the developed CO2 plume. This large-scale
impact on pressure perturbation out of the injected fluid plume is beyond the analysis of
pumping tests in many textbooks (Vukovic and Soro 1992; Batu 1998; Cheng 2000). Such
pressure-perturbation propagation may thus encounter the formation’s lateral boundaries.
Numerical simulations may be employed to predict the injection-induced pressure perturba-
tion in laterally bounded aquifers and the leakage into overlying/underlying aquitards and
neighboring aquifers (e.g., Zhou et al. 2008). Alternatively, pressure perturbation and leakage
in a bounded system may be obtained using image well theory with the existing solutions
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Large-Scale Injection-Induced Pressure Perturbation 129

of infinite aquifers (Earlougher 1977; Streltsova 1988; Butler and Tsou 2003). However,
considering that the horizontal area of a bounded aquifer is an infinitesimal fraction of the
infinite solution domain, a very large number of image wells may be needed to calculate pres-
sure perturbation and leakage in the bounded aquifer. A simpler (semi-)analytical solution
(if possible) is needed for a laterally bounded aquifer–aquitard system.

Butler and Tsou (2003) demonstrated that the total leakage rate integrated over the entire
aquifer–aquitard interface may be scale invariant (i.e., independent of the radial extent of
a bounded aquifer), provided that the hydrogeologic and other geometric parameters and
injection/pumping rate are the same. They proved this phenomenon using an infinite number
of image wells and the existing Hantush-Jacob solution for infinite aquifers. Zhan and Bian
(2006) employed the scale-invariance of total leakage rate to extend applications of their
semi-analytical solutions for infinite aquifers to finite-size aquifers with lateral impervious
boundaries. However, the question arises whether the scale invariance is applicable for any
kind of hydrogeologic and geometric conditions in the aquifer and wellbore radius. A com-
pletely general proof of the scale-invariant phenomenon of total leakage rate is also much
needed, demonstrated using an analytical solution.

This paper aims at (1) developing semi-analytical solutions for injection- (or pumping-)
induced pressure perturbation and leakage in a laterally bounded aquifer with an overly-
ing/underlying aquitard and (2) a general proof of the scale invariance in the total leakage
rate between the aquifer and the aquitard.

We coupled a one-dimensional radial flow equation for the aquifer with a one-dimensional
vertical flow equation for the aquitard, using the continuity of pressure and flow rate at their
interface. Applying Laplace transforms to the governing flow equations and their initial
and boundary conditions in dimensionless form, we obtained the analytical solutions to
the Laplace-transformed pressure perturbation (i.e., hydraulic head drawdown/rise) in the
aquifer and the aquitard, as well as the rate and volume of leakage through the aquifer–
aquitard interface. Using these solutions, we proved that the total leakage rate and volume are
independent of the radial extent of the aquifer and wellbore radius. It was also demonstrated
that the derived semi-analytical solutions are generalized solutions for infinite aquifers. The
Laplace transforms of pressure perturbation, and leakage rate and volume were inverted
numerically to obtain their counterparts in the real time domain, with an application to large-
scale injection and storage.

2 Solutions for a Laterally Bounded Aquifer–Aquitard System

For simplification, the following development of the semi-analytical solutions was demon-
strated for the aquifer–aquitard system with an underlying impervious layer (see Fig. 1)—
although an underlying aquitard of different hydrogeologic properties and boundary con-
ditions at its bottom can be easily added. In this case, the pressure perturbation is caused
by injection of a given volumetric rate of native fluid into the aquifer, but the solutions are
really applicable to pumping-induced drawdown as well. The system consists of an aquifer
of a radial extent rB and an overlying aquitard. The aquifer and aquitard are both assumed
to be homogeneous and isotropic, with constant thicknesses B and B ′, respectively. The
injection at a constant volumetric rate, Q, occurs in the injection zone or the well of a radius
rw . This injection leads to pressure rise in the region near the injection zone in the aquifer,
and the pressure perturbation then propagates laterally away from the injection zone toward
the impervious lateral boundary located at radius rB . The pressure perturbation propagates
vertically through the aquitard to the top boundary of the aquitard, where either a condition of
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Fig. 1 Schematic showing a laterally bounded aquifer, with an overlying aquitard and an underlying imper-
vious layer

zero pressure perturbation (Case 1) or no flow (Case 2) is assumed. The pressure-perturbation
propagation also leads to leakage of native fluid from the aquifer into the aquitard and through
the aquitard into the overlying aquifer in Case 1. It is assumed that the aquifer’s hydraulic
conductivity is significantly higher than the aquitard’s conductivity so that the groundwa-
ter flow in the aquifer is one-dimensional, radial, and horizontal and that the groundwater
flow in the aquitard is one-dimensional and vertical. It is assumed that the native fluid and
the injected fluid are of the same fluid properties (i.e., density and viscosity), constant for
the entire injection period, even though the fluid compressibility is included in the specific
storage parameter.

2.1 Hydraulic Head Rise

The governing equation for the one-dimensional radial flow in the aquifer is written as (Bear
1972; Moench 1985):

∂2h

∂r2 + 1

r

∂h

∂r
= Ss

K

∂h

∂t
+ w′ rw ≤ r ≤ rB (1a)

with

w′ = q ′

K B
= − K ′

K B

∂h′

∂z

∣
∣
∣
∣
z=0

(1b)

where h = h(r, t) is the hydraulic head in the aquifer, r is the radial distance from the injection-
zone center, t is time, Ss is the specific storativity of the aquifer, K is the hydraulic conductivity
of the aquifer, q ′(r, t) is the specific discharge rate through the aquifer–aquitard interface
(positive for leakage from the aquifer), w′ = w′(r, t) is the scaled discharge rate per unit
K B, K ′ is the hydraulic conductivity of the aquitard, h′ = h′(r, z, t) is the hydraulic head
in the aquitard, and z is the vertical coordinate upward from the aquifer–aquitard interface
(z = 0).
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The boundary conditions at the edge of the injection zone (or wellbore) and the outer
radial boundary are written as follows, respectively:

− 2πrw K B
∂h

∂r
= Q at r = rw (1c)

∂h

∂r
= 0 at r = rB (1d)

The initial condition is

h(r, t) = hi (r) at t = 0 (1e)

where hi (r) is the initial hydraulic head.
The one-dimensional vertical flow through the aquitard is written as:

∂2h′

∂z2 = S′
s

K ′
∂h′

∂t
0 ≤ z ≤ B ′, (2a)

where S′
s is the specific storativity of the aquitard. The boundary conditions at the top and

bottom of the aquitard are written as follows:

h′(r, z, t) = h(r, t) at z = 0, t ≥ 0 (2b)

and
{

h′(r, z, t) = h′
i (r, z) at z = B ′, in Case 1

∂h′(r,z,t)
∂z = 0 at z = B ′, in Case 2

(2c)

where h′
i (r, z) is the specified initial condition of hydraulic head in the aquitard. Equation 2b

implies continuity in the hydraulic head at the aquifer–aquitard interface. Case 1 denotes the
condition of no change in hydraulic head with time at the aquitard top, while Case 2 denotes
the no-flow condition at the aquitard top.

The governing equations and their associated initial and boundary conditions in Eqs. 1
and 2 can be written in a dimensionless form using:

h D = 4π K B

Q
(h − hi ), h′

D = 4π K B

Q
(h′ − h′

i ), tD = K

Ss B2 t, rD = r/B,

zD = z/B ′, w′
D = 4π B2

Q
q ′ (3)

where h D , h′
D , tD , rD , zD , and w′

D are the dimensionless variables for hydraulic head rise
in the aquifer, hydraulic head rise in the aquitard, time, radial distance, vertical coordinate,
and the scaled discharge rate, respectively. Introduction of these dimensionless variables into
Eq. 1 leads to the governing equation and its associated initial and boundary conditions being
written in the dimensionless form:

∂2h D

∂rD
2 + 1

rD

∂h D

∂rD
= ∂h D

∂tD
+ w′

D rDw ≤ rD ≤ rDB , (4a)

with

w′
D = −λ2 ∂h′

D

∂zD

∣
∣
∣
∣
zD=0

(4b)
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− ∂h D

∂rD
= 2

rDw

at rD = rDw (4c)

∂h D

∂rD
= 0 at rD = rDB , (4d)

h Di (r) = 0 (4e)

where

λ =
√

K ′/B ′
K/B

, (4f)

rDw(≡ rw/B) is the dimensionless injection-zone radius, rDB(≡ rB/B) is the dimensionless
radial extent of the aquifer, h Di (r) is the dimensionless initial hydraulic head rise, and λ is
a leakage parameter.

Similarly, the governing equation and its associated initial and boundary conditions, Eq. 2,
for the aquitard can be written in the dimensionless form:

∂2h′
D

∂zD
2 = σ

λ2

∂h′
D

∂tD
0 ≤ zD ≤ 1, (5a)

with the following initial and boundary conditions:

h′
D(rD, zD, tD) = h D(rD, tD) at zD = 0 and tD ≥ 0 (5b)

{

h′
D = 0 at zD = 1, in Case 1

∂h′
D

∂zD
= 0 at zD = 1, in Case 2

(5c)

h′
Di (r, z) = 0 (5d)

where

σ = S′
s B ′/Ss B. (5e)

By applying the Laplace transform to Eq. 5, the subsidiary differential equations are obtained,
with boundary conditions as follows:

∂2h′
D

∂zD
2 = m2h′

D 0 ≤ zD ≤ 1, (6a)

h′
D(rD, zD, p) = h D(rD, p) at zD = 0 (6b)

{

h′
D = 0 at zD = 1, in Case 1

∂h′
D

∂zD
= 0 at zD = 1, in Case 2

(6c)

where

m = √
σ p/λ, (6d)

p is the Laplace variable, and a denotes the Laplace-transform of variable a.
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Following Moench (1985), one obtains the solutions to h′
D(rD, zD, p) for the aquitard:

h′
D(rD, zD, p) =

{

h D sinh[(1 − zD)m]/ sinh(m), in Case 1
h D cosh[(1 − zD)m]/ cosh(m), in Case 2

(7)

Therefore, the hydraulic head rise in the aquitard, h′
D(rD, zD, p), in the Laplace domain

depends on the solution of the transformed head rise in the aquifer, h D(rD, p). The Laplace
transform of the dimensionless scaled discharge rate, w′

D(rD, p), in Eq. 4b is written as:

w′
D(rD, p) = h D(rD, p) f ; f (λ, m) =

{

λ2m coth(m), in Case 1
λ2m tanh(m), in Case 2

(8)

Using Eq. 8, the Laplace transform of the governing equation and its associated boundary
conditions for the aquifer in the dimensionless form, Eq. 4, is obtained as follows:

∂2h D

∂rD
2 + 1

rD

∂h D

∂rD
= h D(p + f ) rDw ≤ rD ≤ rDB (9a)

− ∂h D

∂rD
= 2

rDw p
at rD = rDw (9b)

∂h D

∂rD
= 0 at rD = rDB (9c)

The general solution to Eq. 9a is given by the modified Bessel functions (Abramowitz and
Stegun 1972):

h D(rD, p) = A1 I0(rD x) + A2 K0(rD x), (10a)

where

x =
√

p + f , (10b)

I0 is the modified Bessel function of the first kind and zero order, and K0 is the modified Bessel
function of the second kind and zero order. The two coefficients, A1 and A2, are determined
using the two boundary conditions in Eqs. 9b and 9c. Recalling that ∂K0(y)/∂y = −K1(y)

and ∂ I0(y)/∂y = I1(y) leads to the solution of the Laplace-transform head rise in the aquifer:

h D(rD, p) = 2

rDw px

K1(rDB x)I0(rD x) + I1(rDB x)K0(rD x)

[I1(rDB x)K1(rDwx) − K1(rDB x)I1(rDwx)]
(11)

where I1 is the modified Bessel function of the first kind and first order, and K1 is the
modified Bessel function of second kind and first order. The derived solution in Eq. 11 differs
with all previous solutions in that there is one extra term in the numerator of the right-hand
side, reflecting the effect of the no-flow condition at the outer radial boundary. The physical
interpretation of this solution is given in Sect. 4.

2.2 Leakage Through the Aquifer–Aquitard Interface

When the hydraulic conductivity contrast (K/K ′) is larger than 100 (Zhan and Bian 2006),
the essentially horizontal flow in the aquifer changes into vertical flow in the aquitard at the
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aquifer–aquitard interface, obeying the law of refraction of streamlines (Zhou et al. 2001).
From the definition of the vertical leakage rate integrated up to an arbitrary radius (rR):

�v(rR, t) =
rR∫

rw

2πrq ′dr =
rR∫

rw

2πr K Bw′(r, t)dr , (12a)

one obtains the dimensionless leakage rate in the time and Laplace domains:

�vD(rDR, tD) = 1

2

rDR∫

rDw

rDw′
DdrD, (12b)

�vD(rDR, p) = 1

2
f

rDR∫

rDw

rDh D(rD, p)drD, (12c)

where the dimensionless variables rDR = rR/B and �vD = �v/Q are introduced.
Inserting the solution of h D(rD, p) from Eq. 11 into Eq. 12c, and recalling

∫

yK0(y)dy =
−yK1(y) and

∫

y I0(y)dy = y I1(y) (Abramowitz and Stegun 1972) leads to

�vD(rDR, p) = f

px2

{

1 − rDR [I1(rDB x)K1(rDR x) − K1(rDB x)I1(rDR x)]

rDw [I1(rDB x)K1(rDwx) − K1(rDB x)I1(rDwx)]

}

(13)

The accumulative volume of water, Vv(rR, t), leaking through the aquifer–aquitard interface
within the radius of rR from the edge of the injection zone is defined as the integrated leakage
from 0 to time t (Zhan and Bian 2006). Similarly, one obtains

Vv(rR, t) =
t∫

0

�v(rR, τ )dτ, (14a)

VvD(rDR, tD) =
tD∫

0

�vD(rDR, τ )dτ, (14b)

VvD(rDR, tD) = 1

p
�vD(rDR, tD), (14c)

where the dimensionless leakage volume VvD(rDR, tD) = K
Ss B2 Q

Vv(rR, t) is introduced.

2.3 Total Horizontal Flux

On the basis of the definition of the total horizontal flux, �h(r, t), across the thickness of the
aquifer at radius r and time t :

�h(r, t) = 2πr Bqh = −2πr BK
∂h

∂r
, (15a)

one can easily obtain

�h D(rD, tD) = −1

2
rD

∂h D

∂rD
, (15b)
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�h D(rD, p) = rD

rDw p

I1(rDB x)K1(rD x) − K1(rDB x)I1(rD x)

[I1(rDB x)K1(rDwx) − K1(rDB x)I1(rDwx)]
, (15c)

where qh(r, t) is the horizontal specific discharge in the aquifer and �h D(rD, tD)(≡ �h/Q)

is the dimensionless total horizontal flux through the aquifer at dimensionless radius rD .
Similar to the dimensionless accumulative volume of water, VvD(rDR, tD), leaking through

the aquifer–aquitard interface, the dimensionless accumulative volume of water Vh D(rD, tD)

migrating through the entire aquifer thickness from 0 to time t is obtained as:

Vh D(rDR, tD) = 1

p
�h D(rDR, tD) (15d)

In summary, for a laterally bounded aquifer–aquitard system, Eqs. 7, 11, 13, 14c, 15c, and
15d give the analytical solutions to the Laplace transforms of the hydraulic head rise in the
aquitard, the hydraulic head rise in the aquifer, the leakage through the aquifer–aquitard
interface, the accumulative leakage volume, the total horizontal flux, and the accumulative
water volume through the aquifer thickness in their dimensionless form, respectively. Note
that using Eqs. 13 and 15c we can calculate the dimensionless storage rate of the injected fluid
within the aquifer (with a radius of rD): �s D(rD, tD) = 1 − �vD(rD, tD) − �h D(rD, tD).

2.4 Special Cases of the Bounded-System Solutions

The “laterally bounded” aquifer–aquitard system with a finite radial extent can be considered
as a generalized case of a “laterally infinite” aquifer–aquitard system when the “hypothetical”
impervious boundary is located far away from the pressure-perturbation region. Setting
rDB → ∞ in Eqs. 11, 13, 14c, and 15c and recalling K1(∞) = 0 results in the solutions for
an infinite aquifer–aquitard system:

h D(rD, p) = 2K0(rD x)

rDw px K1(rDwx)
(16a)

�vD(rDR, p) = f

px2

[

1 − rDR K1(rDR x)

rDw K1(rDwx)

]

(16b)

VvD(rDR, p) = f

p2x2

[

1 − rDR K1(rDR x)

rDw K1(rDwx)

]

(16c)

�h D(rD, p) = rD K1(rD x)

rDw pK1(rDwx)
(16d)

Equation 16a for a “laterally infinite” aquifer–aquitard system is identical to the solu-
tion given by Moench (1985) in his Eq. 25, when the wellbore storage and skin effect are
assumed to be negligible. Equations 7 and 16 can be used to calculate the Laplace trans-
forms of hydraulic head rise in the aquifer and the aquitard, the rate of leakage through the
aquifer–aquitard interface, the accumulative leakage volume, and the total horizontal flux,
respectively, for a “laterally infinite” aquifer–aquitard system.

Now we proceed to compare our solutions with other existing solutions given by Hantush
and Jacob (1955) and Hantush (1960) for drawdown analysis, and given by Zhan and Bian
(2006) for estimating leakage rate. When the pumping well has an infinitesimal radius
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(i.e., rw → 0), the drawdown solution from Eq. 16a, by recalling limy→0 yK1(y)= 1, is as
follows:

h D(rD, p) = 2

p
K0(rD x). (17a)

In the case of negligible aquitard storage, by recalling limm→0m coth(m)= 1 and
limm→0m tanh(m) = 0, we arrive at

x =
√

p + f =
{

[

p + λ2
]1/2

, in Case 1
p1/2, in Case 2

(17b)

and in the case of sufficiently large storage in the aquitard, we obtain

x =
√

p + f =
{[

p + λ2m coth(m)
]1/2

, in Case 1
[

p + λ2m tanh(m)
]1/2

, in Case 2
(17c)

Note that for an aquitard with no storage and impervious boundary at the top, the solution
in Eq. 17a with Eq. 17b for Case 2 is exactly the same as the Theis solution in the Laplace
domain (Theis 1935). The solution in Eq. 17a with Eq. 17b for Case 1 is identical to the
solution given by Hantush and Jacob (1955). The solutions in Eq. 17a with Eq. 17c for both
cases are the same as the solutions of Hantush (1960), although Hantush gave approximate
analytical solutions for early and late times.

Under the assumptions of (1) an infinitesimal injection-zone radius and (2) no aquitard
storage, Eq. 16b becomes:

�vD(rDR, p) = f

px2 [1 − (rDR x)K1(rDR x)] , (18)

with f = λ2 and x = √

p + λ2. Note that Eq. 18 is identical to the leakage solutions given
by Zhan and Bian (2006) in their Eq. 11.

In summary, the derived analytical solutions in the Laplace domain for a laterally bounded
aquifer–aquitard system are generalized solutions to the existing analytical or semi-analytical
solutions for a laterally infinite system. When the injection rate is very large and the system’s
specific storativity (or pore compressibility) is relatively small, the existing solutions for
infinite aquifers may not be applicable, because pressure perturbation encounters the aquifer’s
lateral boundary. The new solutions derived in this paper are applicable to both laterally
bounded and infinite systems.

3 Scale Invariance of Total Leakage Rate and Volume

3.1 Scale-Invariant Total Leakage Rate and Volume

For a laterally bounded aquifer–aquitard system, the total leakage rate T (t) (≡ �v(rB , t)) is
defined as the leakage rate integrated from the edge of the injection zone (or wellbore) (i.e.,
r = rw and rD = rDw) to the outer radial boundary (i.e., rR = rB and rDR = rDB) (Butler
and Tsou 2003; Zhan and Bian 2006). By definition, the Laplace transform, TD(p), of the
dimensionless total leakage rate is obtained as:
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TD(p) = �vD(rDB , t) = �vD(rDB , p) = 1

2

rDB∫

rDw

rDw′
DdrD . (19)

Using Eqs. 13 and 14c leads to the following dimensionless total leakage rate and volume in
the Laplace domain:

TD(p) = f

p(p + f )
(20a)

VvD(rDB , p) = f

p2(p + f )
(20b)

As indicated in Eq. 20, the dimensionless total leakage rate and volume in the Laplace domain,
TD(p) and VvD(rDB , p), are dependent only on f and the p variable (representing time).
From the parameter definitions in Eqs. 4f, 5e, and 6d, we know that the dimensionless total
leakage rate and volume depend only on the hydrogeologic properties of the aquifer–aquitard
system (i.e., λ and σ for the contrast of hydraulic conductivity and specific storativity between
the aquifer and the aquitard), the thickness of the aquifer and the aquitard, and the time since
injection starts. It is apparent that TD(p) and VvD(rDB , p) are independent of the radial
extent of the bounded aquifer–aquitard system and of the radius of the injection zone. This
indicates that the total leakage rate and volume in the real-time domain is scale invariant.

For an infinite system, setting rDR → ∞ in Eqs. 16b and 16c and recalling that limy→∞
yK1(y) = 0 leads to an expression for the dimensionless total leakage rate and volume in
the Laplace domain, which are exactly the same as Eqs. 20a and 20b. As a result, a laterally
infinite aquifer–aquitard system has the same total leakage rate and volume as a laterally
bounded system, provided that the same pumping/injection rate is used. Equation 20 can
be used to calculate the Laplace-transformed total leakage rate and volume for the entire
aquifer–aquitard interface, for both a “laterally bounded” system and an infinite system.

3.2 Asymptotic Approximations

The early-time and late-time asymptotic approximations for the total leakage rate can be
obtained through the analytical inverse Laplace transforms of the approximations to Eq. 20.
Considering the fact that the hyperbolic tangent and cotangent in Eq. 8 approach unity as their
argument becomes large (m > 3.0) (Moench 1985, p. 1128), we can obtain the early-time
approximation (tD < 0.11σ/λ2):

TD(p) = λ
√

σ

p
(√

p + λ
√

σ
) (21)

for Cases 1 and 2.
Considering the fact that the hyperbolic tangent approaches the value of its argument and

the hyperbolic cotangent approaches the inverse of its argument as their argument becomes
small (m < 0.316), we can obtain the late-time approximations (tD > 10σ/λ2):

TD(p) =
{

λ2

p(p+λ2)
, in Case 1

σ
p(1+σ)

, in Case 2
(22)
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Analytical inversion of the Laplace transforms in Eq. 22 results in:

TD(tD) =
{

1 − exp(−λ2tD), in Case 1
σ

1+σ
, in Case 2

(23)

As shown in Eq. 23, when the aquitard top is impervious to flow (i.e., Case 2), the total leakage

rate through the aquifer–aquitard is TD(tD) = S′
s B′

Ss B+S′
s B′ . This indicates that TD(tD) depends

only on the ratio between the injected fluid stored in the aquitard (S′
s B ′) and the total injected

fluid (Ss B + S′
s B ′) stored in the entire aquifer–aquitard system. When the aquitard top is

open to an infinite reservoir (i.e., Case 1), eventually the native fluid leaks (at the equivalent
volumetric rate of injected fluid) out of the aquifer–aquitard system through the aquitard top
boundary (as well as through the aquifer–aquitard interface), and a steady-state condition is
reached for the entire system. The time needed to reach the steady-state condition depends
on the hydrogeologic parameters σ and λ, as well as the injection rate.

The scale invariance of the total leakage rate and volume has been mathematically proven
in a general, but straightforward, way for a “laterally bounded” radial system. This proof
is more general than that given by Butler and Tsou (2003), who used image well theory
and numerical modeling to account for the total leakage of a finite-size rectangular aquifer
with zero-radius of the injection zone. The scale-invariant phenomenon indicates that the
total leakage rate and volume are independent of the radius of the injection zone and the
lateral extent of the aquifer. They depend only on the hydrogeologic properties of the aquifer–
aquitard system, the thicknesses of the aquifer and the aquitard, and the time since injection
starts (i.e., λ, σ , and t). Considering that the scale-invariant phenomenon has been proved for
a “laterally bounded” radial system in this paper and for a rectangular system in Butler and
Tsou (2003), it is expected that the scale-invariance is valid for any aquifer–aquitard system
with a wide range of more complicated aquifer geometries.

4 Physical Interpretation of the Solutions

To physically interpret the analytical solutions given in Eqs. 11, 13, and 15c for the hydraulic
head rise in the aquifer, the leakage through the aquifer–aquitard interface, and the horizontal
flux, we compared the first and the second terms in the denominators of these equations, by
evaluating the value of the E ratio:

E(rDw, rDB , x) = K1(rDB x)/I1(rDB x)

K1(rDwx)/I1(rDwx)
. (24)

Using the approximations y−1 I1(y) = 0.5 + O(y2) and yK1(y) = 1 + O(y2) (Abramowitz
and Stegun 1972, pp. 378–379), we obtain:

E(rDw, rDB , x) ≤ E(rDw, rDB , x → 0) =
(

rDw

rDB

)2

. (25)

When rDB/rDw ≥ 10, the E ratio can be approximated by zero, with an approximation error
less than 1%. To demonstrate the approximation errors for a variety of rDw and rDB , we
used four values of the dimensionless injection-zone radius (rDw = 0.01, 0.1, 1.0, 10.0)

and two reasonable values of the dimensionless aquifer’s radial extent (rDB = 100, 1000).
Figure 2 shows the dependence of the E ratio on the variable x in the Laplace domain, the
dimensionless radius of the injection zone (rDw), and the dimensionless radial extent of the
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Fig. 2 Dependence of the E ratio on the variable x =
√

p + f , the dimensionless radius of the injection zone
rDw , and the dimensionless radial extent of the aquifer rDB

aquifer (rDB). The E ratio increases as the variable x decreases and approaches a constant
value, transitioning from an initially transient condition (relatively large x) to a steady-state
condition (relatively small x). In general, the E ratio is smaller than 0.01 as long as the ratio
rDB/rDw ≥ 10 as indicated by Eq. 25.

Considering the negligible E ratio when rDB/rDw ≥ 10, the analytical solutions in Eqs. 11,
13, 15c can be rewritten in their approximate form:

h D(rD, p) = 2K0(rD x)

rDw px K1(rDwx)
+ 2K1(rDB x)I0(rD x)

rDw px K1(rDwx)I1(rDB x)
(26a)

�vD(rDR, p) = f

px2

[

1 − rDR K1(rDR x)

rDw K1(rDwx)

]

+ f

px2

rDR [K1(rDB x)I1(rDR x)]

rDw [I1(rDB x)K1(rDwx)]
(26b)

�h D(rD, p) = rD K1(rD x)

rDw pK1(rDwx)
− rD

rDw p

K1(rDB x)I1(rD x)

K1(rDwx)I1(rDB x)
. (26c)
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We compared Eq. 26, the approximate solutions for a laterally bounded system, to Eq. 16,
the solutions for a laterally infinite system, for the hydraulic head rise, the leakage rate, or
the horizontal flux. The approximate analytical solution for a bounded aquifer consists of
the solution for an infinite system and a term reflecting the effect of the impervious lateral
boundary. This boundary-effect term depends on the dimensionless radial extent rDB , because
of the presence of K1(rDB x) and I1(rDB x) in Eq. 26.

As implied by Eq. 26a, the hydraulic head rise at a given rD in a bounded aquifer is higher
than that in an infinite system of the same λ and σ values. The extra head rise, represented
by the boundary-effect term, results in a higher rate of flow through the aquifer–aquitard
interface. The enhanced flow rate occurs over the entire bounded system and leads to a higher
leakage rate �vD(rDR, p), as shown by the second term in Eq. 26b. It is this self-adjusting
nature of the bounded aquifer–aquitard system that results in the scale invariance of the total
leakage rate. Furthermore, as shown in Eqs. 13 and 20a, the leakage rate �vD(rDR, p) in the
Laplace domain changes from 0 at the edge of the wellbore or injection zone (rD = rDw) to
TD(p) (≡ f /p(p + f )) at the impervious radial boundary (rD = rDB). However, between
these two end values, �vD(rDR, p) depends on rDR in a complicated form (to be shown in
Sect. 5.2).

Note that in the above physical interpretation of the derived analytical solutions in the
Laplace domain (as well as in the mathematical formulations), it is assumed that no changes
in the λ and σ parameter are caused by pressure increase from the initial hydrostatic pressure.
This implies that geomechanical damage caused by overpressure needs be avoided (USEPA
1994; Zhou et al. 2008). The sustainable injection rate (or the injection time for a given
injection rate) can be easily calculated using Eq. 11, when the maximum sustainable pressure
is known.

5 Solution Evaluation

The analytical solutions presented in Sects. 2 and 3 are applied in this section. We used
numerical inversion of the Laplace transforms in these analytical solutions to obtain the
pressure perturbation (or hydraulic head drawdown/rise), leakage rate, and total leakage
rate in the real-time domain. An example of a large-scale injection in a deep sedimentary
sandstone aquifer was used to evaluate the solutions for a laterally bounded aquifer–aquitard
system.

5.1 Numerical Inversion

In general, no analytical inverse Laplace transforms of the solutions presented in Sects. 2
and 3 exist, and numerical inversion is needed. A number of numerical methods for Laplace
transform inversion are available (Cohen 2007). Among them, the methods of Stehfest (1970)
and de Hoog et al. (1982) have been extensively employed with semi-analytical solutions
developed for field pumping and tracer tests (e.g., Moench 1985; Moridis 1999; Zhan and
Bian 2006; Zhou et al. 2007). In this research, the de Hoog et al. (1982) method was employed
for numerical inversion of our analytical solutions. The code was verified by comparing our
solutions with the solutions presented in Fig. 2b of Moench (1985) for the Theis model and the
Moench model with no skin effect and wellbore storage. The hydrogeologic parameters used
are λ= 0.004 and σ = 100, with the dimensionless radius of the observations at rD = 10. We
applied the models to both Cases 1 and 2 for comparison, and added the underlying aquitard
of the same properties as the overlying aquitard. An excellent agreement for both the Theis

123



Large-Scale Injection-Induced Pressure Perturbation 141

and Moench models between our solution and Moench’s solution was achieved (not shown),
indicating that the numerical inversion of the Laplace transforms of analytical solutions works
well. The FORTRAN code used in this paper can be obtained from the corresponding author
upon request.

5.2 Behavior of Hydraulic Head Rise and Leakage in a Bounded System

A typical example for large-scale deep injection was used to demonstrate the behavior of
hydraulic head rise and leakage in a laterally bounded brine aquifer. In the example, it was
assumed that an equivalent volume of native brine is injected into the brine aquifer at a
constant volumetric injection rate. (This example was extracted from a typical problem for
industrial-scale injection of CO2 into a deep sedimentary sandstone-brine aquifer (Birk-
holzer et al. 2008; Zhou et al. 2008) by neglecting the two-phase CO2-brine flow regime,
which cannot be represented by the developed analytical solutions.) The following prop-
erties were used: aquifer permeability of k = 10−13 m2, aquifer pore compressibility of
βp = 4.5 × 10−10 Pa−1, aquifer thickness of 60 m, aquitard permeability of k′ = 10−18 m2,
aquitard pore compressibility of β ′

p = 9.0 × 10−10 Pa−1, aquitard thickness of 100 m, and
water compressibility of βw = 3.5×10−10 Pa−1. Accordingly, the hydraulic conductivities of
the aquifer and the aquitards are K = 0.20 m day−1 and K ′ = 0.20 × 10−5 m day−1, respec-
tively, assuming brine density of ρ = 1200 kg m−3, gravity acceleration of g = 9.8 m s−2, and
water viscosity ofµ= 0.5×10−3 Pa s. The specific storativity of the aquifer is calculated using
Ss = φρg(βw + βp)= 1.88 × 10−6 m−1, where the aquifer’s porosity is φ = 0.2. The spe-
cific storativity of the aquitards is calculated using S′

s = φ′ρg(βw +β ′
p)= 1.47 × 10−6 m−1,

where the aquitards’ porosity is φ′ = 0.10. Based on the above hydrogeologic and geometric
properties, we calculated the two model parameters λ= 2.45×10−3 and σ = 1.30. The addi-
tional parameters are rw = 6.0 m and rB = 20,000 m for the bounded system, and the injection
rate is Q = 5700 m3 day−1. An overlying aquitard and an underlying aquitard of the same
properties were considered, assuming the conditions of zero hydraulic head rise at the top
of the overlying aquitard and the bottom of the underlying aquitard. Because an underlying
aquitard is considered, the leakage term f in Eq. 8 is doubled, and all other solutions remain
unchanged. For comparison, an infinite system of the same properties as the bounded system
was also considered.

Figure 3 shows the profiles of the dimensionless hydraulic head rise along the radial
direction, h D(rD, tD), as a function of dimensionless time (tD), for the bounded aquifer–
aquitard system calculated using Eq. 11 and its comparison with those for the infinite system
calculated using Eq. 16a. At tD = 1.08 × 103 (0.1 year of injection), the injection-induced
hydraulic head rise has not reached the outer radial boundary of the bounded system, so that
identical profiles are obtained for both the bounded and infinite aquifers. At tD = 1.08 ×
104, the hydraulic head rise has just reached the outer radial boundary, but no significant
difference in the profiles occurs between the bounded and the infinite systems. Starting
with tD = 1.08 × 104, the profile for the bounded aquifer deviates from that of the infinite
aquifer. At tD = 5.40 × 104, the deviation mainly occurs in the region close to the outer
radial boundary. After tD = 1.08 × 105, the profile of the bounded aquifer is significantly
different from that of the infinite aquifer over the entire region of rD ≤ 333.3. The hydraulic
head rise in the storage formation gradually increases; a steady-state condition is observed at
tD = 1.08 × 106 (100 years of injection) for the bounded system, as no changes are obtained
for longer injection time. For the infinite aquifer, however, the condition appears to be at a
quasi-steady state after tD = 3.24 × 105 for the inner region (rD ≤ 333.3), while the front
of the pressure wave continues to propagate away.
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Fig. 3 Radial profiles of the dimensionless hydraulic head rise, as a function of dimensionless injection time,
at a early time and b later time

Figure 4 shows the incremental dimensionless hydraulic head rise, h D(rD, tD2) −
h D(rD, tD1), over five intervals of the dimensionless time from 0 to tD = 1.08 × 106. At
early time, the incremental head change decreases from the injection zone to the outer radial
boundary, as shown for the time intervals from 1.08×103 to 1.08×104 and from 1.08×104

to 5.40×104. The shape of the profile of incremental head rise indicates the injection-driven
pressure change. After that, the incremental head rise with injection time becomes relatively
uniform over the entire bounded aquifer, driven by the needs to store additional injected fluid
in the entire aquifer–aquitard system. This pressure change is referred to as storage-driven
pressure changes (Zhou et al. 2008).
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Fig. 4 Radial profiles of the incremental dimensionless hydraulic head rise in the bounded aquifer for five
intervals of dimensionless time

The profiles of the hydraulic head change along the radial direction determine the shape
of the radial profiles of the leakage rate, �vD(rDR, tD), as shown in Fig. 5. For the bounded
system, the leakage is attributed mainly to the hydraulic head rise in the pressure-perturbation
region of rD ≤ 70 and rD ≤ 300 at tD = 1.08 × 103 and 1.08 × 104, respectively. Once the
pressure wave reaches the outer boundary at approximately tD = 1.08 × 104, the increase in
the leakage rate with injection time is attributed to the incremental hydraulic head rise over
the entire domain (see Fig. 4). The other factor affecting the shape of the leakage-rate profiles
is that the aquifer–aquitard interface area (i.e., 2πrD
rD) available for leakage per unit 
rD

increases with rD . Because of the radial feature of the bounded system and the relatively
uniform incremental hydraulic head rise, the radial profile of the leakage rate changes its
shape: when tD < 1.08 × 104, the leakage occurs mainly within the pressure-perturbation
region, with a flat line outside of this region; when tD > 1.08 × 104, the slope of the radial
profile becomes steeper with rDR (see Fig. 5a). At tD = 1.08 × 106, the dimensionless total
rate of leakage through the entire aquifer–aquitard interface is unity, reaching a steady-state
condition for the entire aquifer–aquitard system.

Figure 5b shows the radial profile of the leakage rate, �vD(rDR, tD), as a function of
dimensionless injection time, for a radial distance rDR < 333.3 (20 km) for the infinite sys-
tem. A steady-state leakage rate is obtained for the region rDR < 333.3 at approximately
tD = 1.08 × 105, with the leakage rate of 0.46 at rDR = 333.3. In other words, 46% of the
injected fluid rate leaks out of the 20 km domain. Note that the radial profiles of leakage
rate at tD = 1.08 × 105, 3.24 × 105, 1.08 × 106 are essentially the same. The leakage rate
at tD = 1.08 × 103, for example, is higher than the steady-state leakage rate for the region
rDR ≤ 100, even though the injection-induced hydraulic head is lower. This anomaly in the
leakage rate is attributed to the hydraulic gradient at the aquifer–aquitard interface, which
depends on the pressure increase in both the aquifer and the aquitards (see Eq. 8 for f ). For
example, for a given hydraulic head rise in the aquifer at a given rD , the diffusive penetration
into the aquitards leads to a decrease with time in hydraulic gradient at the aquifer–aquitard
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(a) Bounded System
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(b) Infinite System

Fig. 5 Radial profiles of the dimensionless leakage rate, �vD(rDR , tD), through the aquifer–aquitard inter-
face, as a function of dimensionless injection time, for a the laterally bounded aquifer and b the infinite system.
Note that (b) shows only a portion (close to the injection zone) of the infinite system

interface. On the basis of the proven scale-invariant phenomenon of the total leakage rate, we
consider that, for a given time, the difference between the total leakage rate for the bounded
aquifer and the leakage rate for rDR = 333.3 (i.e., rR =20,000 m) of the infinite system can
be attributed to the leakage rate for the region 333.3 ≤ rDR ≤ ∞ of the infinite system.

Figure 6a shows the evolution of the dimensionless leakage rate �vD(rDR, tD) for the
bounded system, as a function of rDR (= 0.25, 0.50, 0.75, 0.90, 1.00rDB ). The leakage rate
monotonically increases with rDR up to the total leakage rate at rDR = rDB . The contribu-
tion to the total leakage rate from each of the regions (e.g., 0.25rDB ≤ rDR ≤ 0.50rDB )
varies with injection time. For example, the contribution from the region rDR ≤ 0.25rDB is
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Fig. 6 Evolution of a the dimensionless leakage rate, �vD(rDR , tD), through the aquifer–aquitard interface,
b the dimensionless horizontal flux, �h D(rDR , tD), through the aquifer thickness, and c the dimensionless
storage rate, �s D(rDR , tD), of the injected fluid in the aquifer for the bounded aquifer–aquitard system, as a
function of the dimensionless integrated radius rDR . Note that the leakage rate approaches the total leakage
rate as the integrated rDR → rDB and �vD(rDR , tD) + �h D(rDR , tD) + �s D(rDR , tD) = 1

123



146 Q. Zhou et al.

dominant at tD = 1.08 × 103, while the contribution from the 0.5rDB ≤ rDR ≤ rDB region
is dominant at later time (e.g., tD = 1.08×106). For a given rDR value, the leakage rate does
not always monotonically change with injection time, depending on the transient hydraulic
gradient at the aquifer–aquitard interface as discussed above. The total leakage rate for the
entire bounded system, however, increases with time until the system reaches a steady-state
condition at tD = 1.08 × 106 with TD = 1.0. In the steady-state condition, native brine is
displaced, at a discharge rate equivalent to the injection rate, into the overlying/underlying
formations through the aquitards.

As shown in Fig. 6b, the total horizontal flux, �h D(rDR, tD), through the aquifer thickness
at a given dimensionless radius, rDR , increases with injection time until it becomes constant
at approximately tD = 1.08 × 105. This flux provides the fluid mass (1) stored within the
subdomain rDR ≤ rD ≤ rDB in response to continuous pressure increase and (2) leaking
through the aquifer–aquitard interface for rDR ≤ rD ≤ rDB . As a result, the total horizon-
tal flux decreases with rDR until it becomes zero at the outer radial impervious boundary.
Figure 6c shows the evolution of the dimensionless storage rate, �s D(rDR, tD), within the
aquifer, as a function of rDR . Together, Fig. 6 shows the mass balance between the dimen-
sionless injection rate (i.e., unity) and combination of (1) dimensionless storage rate within
rD ≤ rDR , (2) dimensionless total horizontal flux through rD = rDR , and (3) dimensionless
leakage rate for rD ≤ rDR , i.e., �vD(rDR, tD) + �h D(rDR, tD) + �s D(rDR, tD) = 1. Sim-
ilarly, the accumulative volume of water stored within the aquifer and that leaking through
the aquifer–aquitard interface can be calculated using Eqs. 14c and 15d.

6 Conclusions

Existing (semi-)analytical solutions developed for analyzing pumping-induced drawdown
and leakage in an aquifer–aquitard system assume that the aquifer has an infinite radial
extent. Such solutions may not be applicable to a laterally bounded, deep sedimentary aquifer
when large-scale injection of fluids is considered. In this case, injection-induced pressure
perturbation may reach the natural boundary of the aquifer, increasing pressure over the
entire lateral extent of the aquifer, in part because of the relatively low specific storativity or
pore compressibility.

We developed new semi-analytical solutions for the injection- (or pumping-) induced
pressure perturbation in both the aquifer and the aquitard, and the rate and volume of leak-
age through the aquifer–aquitard interface. These solutions were developed by coupling the
one-dimensional radial flow equation for the aquifer and the one-dimensional vertical flow
equation for the aquitard. Continuity in pressure and mass flux at the aquifer–aquitard inter-
face was imposed, and the no-flow condition was used at the outer radial boundary. The
analytical solutions for the Laplace-transform pressure change, leakage rate, and leakage
volume were proved to be the generalized forms of their corresponding solutions for a lat-
erally infinite system. Numerical inversion of these solutions was conducted to analyze the
pressure change and leakage in the real time domain.

Our solutions provide a general proof of the scale-invariant phenomenon of the total leak-
age rate and volume integrated over the entire aquifer–aquitard interface. This phenomenon
was found by Butler and Tsou (2003), using image well theory and an existing semi-analytical
solution of infinite aquifers, with the aid of an infinite number of image wells. Laplace trans-
forms of total leakage rate and volume were demonstrated to be independent of the radial
extent of the aquifer, regardless of a bounded or an infinite aquifer. The total leakage rate and
volume depend only on the hydraulic conductivity and specific storativity of the aquifer and
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the aquitard, as well as on the duration for injection or injection time. The scale-invariant
phenomenon reflects the self-adjusting nature of an aquifer–aquitard system (whether it is
bounded or infinite): a higher pressure increase within a smaller bounded system results in a
higher leakage flux through per unit area of the aquifer–aquitard interface.
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